
1 S-matrix and amplitude M
Statement: Given a theory (e.g. defined by Lagrangian), S-matrix is a matrix
which contains information about all processes that can proceed in that theory,
such as 2 → 2, 2 → 3, 2 → 4 etc. plus the time-reversed processes. When
dealing with unitarity limits, we usually limit our attention to 2 → 2 processes
and out of these only to the most ’prominent’ ones. As an example I show the
’prominent’ part of the S-matrix for our ρ resonance model:

S =













π+π− tt(++) tt(−−) tt(+−) tt(−+)

π+π− S00 S++ S−− S+− S−+

tt(++) S++ S++++ S++−− S+++− S++−+

tt(−−) S−− S−−++ S−−−− S−−+− S−−−+

tt(+−) S+− S+−++ S+−−− S+−+− S+−−+

tt(−+) S−+ S−+++ S−+−− S−++− S−+−+













(1)

Here, e.g., S+++− contains information about process tt̄ → tt̄ in which initial
helicities for the top-antitop quark pair are (++) respectively and final helicities
are (+−).

S-matrix is unitary (the usual argument is that this follows from probability
conservation):

SS† = 1 (2)

We must remember though that the unitarity condition holds for the complete
S-matrix, not just the ’prominent’ part shown in Eq. 1.

In calculations, we usually do not deal with the S-matrix itself but rather
with amplitude M. The relation between M and S depends on the particular
representation we choose for the S-matrix elements. The usual choice is ’mo-
mentum representation’. I suppose this means that initial and final states are
described by eigenfunctions of 4-momentum. Here the relation between S and
M is given by (Sij is one of S-matrix elements - for example, for Eq. 1 we have
S22 = S++++)

Sij = 1 − (2π)4δ(4)(Pf − Pi)Mij (3)

with Pf , Pi total final and initial 4-momenta.
Another choice is ’angular momentum representation’ with initial and final

states described by eigenfunctions of angular momentum. Here the relation
between S and M is given by (for this and many of the points made in this
section see [1])

Sij
J = 1 + 2iMij

J (4)

The subscript J indicates angular momentum representation. In this represen-
tation we call the amplitude ’partial wave’ amplitude. I believe the S-matrix is

1



now of the form

S =

S0 0 0 0 ...
0 S1 0 0 ...
0 0 S2 0 ...
... ...

(5)

with SJ denoting S-matrix for the Jth partial wave. The advantage (?!) of this
representation is that each SJ is itself unitary:

SJS†
J = 1 (6)

and we can have unitarity constraints for each partial wave amplitude.
The relation between amplitude M and MJ is given by the the expansion

of M into partial waves as follows (I use here partial waves aJ as intermediate
step since aJ are often used in literature)

M = 16π
∑

J

(2J + 1)dJ
λµaJ (7)

where

aJ =
1

2

√

s

pfpi

MJ , (8)

dJ
λµ are Wigner’s functions, λ = λ1 − λ2, µ = λ3 − λ4 with λi helicities of the

1 + 2 → 3 + 4 process. For high energies the initial pi and final pf momenta
behave as pi, pf → 1

2

√
s and

aJ → MJ (9)

To obtain partial waves MJ from the amplitude M we use

MJ =
1

32π

√

4pfpi

s

∫ π

0

dJ
λµM sin θdθ (10)

In the case of identical particles in initial and/or final state the above relation
picks up an additional factor of 1√

2
for each pair of identical particles [1].

To conclude this section we write down the differential cross section for the
amplitude M:

dσ

dΩ
=

1

64π2s

pf

pi

|M|2 (11)

Another convenient choice for the amplitude (see [1, 2]) is one in which the
differential cross section is given by

dσ

dΩ
= |f |2 (12)

where

f =
1

8π
√

s

√

pf

pi

M (13)

and

f =
1

pi

∑

J

(2J + 1)dJ
λµMJ (14)
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2 Unitarity limits on partial waves MJ

To derive unitarity limits on partial waves we go back to Eq. 4 and express
MJ

ij

MJ
ij =

1

2i
(SJ

ij − 1), (15)

after squaring we get

|MJ
ij |2 =

1

2i

1

(−2i)
(SJ

ij − 1)(SJ
ij∗ − 1)

=
1

4
(|SJ

ij |2 − 2ReSJ
ij + 1) (16)

Using SJS†
J = 1 we can write

SJ
ijS†

J
jk

= SJ
ijSJ

kj∗ = 1 (17)

Thus for the i-th diagonal term we have

∑

j

SJ
ijSJ

ij∗ = |SJ
i1|2 + |SJ

i2|2 + |SJ
i3|2 + ... = 1 (18)

hence for any i, j we have
|SJ

ij |2 < 1 (19)

Further,

|SJ
ij |2 = (Re SJ

ij + iIm SJ
ij)(Re SJ

ij − iIm SJ
ij)

= (Re SJ
ij)2 + (Im SJ

ij)2 < 1, (20)

hence
|Re SJ

ij | < 1 (21)

Going back to Eq. 16, and taking into account Eqs. 19,21, we conclude that
(0 ≤ |SJ

ij |2 ≤ 1, −2 ≤ 2Re SJ
ij ≤ 2)

0 ≤ |MJ
ij |2 ≤ 1 (22)

Thus, each partial wave is bounded by

|MJ
ij | ≤ 1 (23)

Often in the literature one finds a little bit different treatment of unitarity
limits. Instead of placing a separate limit on each element of the partial wave
matrix MJ as in the equation above, one chooses to diagonalize the partial wave
matrix (the ’prominent’ part of it, in our case the part corresponding to Eq.
1 via Eq. 4) and demands that the largest eigenvalue be less than one. This
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general condition is derived in the Appendix of Ref. [1]. These two different
treatments should lead to similar bounds on the coupling constants - if not, we
would have a problem. I have not used the latter approach in this work.

If the partial wave violates the limit of Eq. 23 at some energy, the usual
conclusion is that the amplitude M as found from tree-level Feynman diagrams
of a renormalizable theory is not complete and we need to include terms beyond
the tree level to get the partial wave obeying the unitarity limits. Or, if we do
not have a renormalizable theory, we have to include some new physics (new
particle) at that energy, which would unitarize the amplitude. This speculation
proved to be very fruitful in the history of particle physics, see e.g. Ref. [2].

To conclude this section, I would like to note that Horejsi in Ref. [2] makes
distinction between elastic and inelastic unitarity bound. The limit of Eq. 23
is general and thus applies to both cases. However, for inelastic processes I can
imagine that Eq. 15 simplifies to

MJ
ij =

1

2i
SJ

ij , (24)

which means that if we limit ourselves to inelastic processes we in fact discard
the part of S-matrix which says that there is nonzero probability that nothing
happens (1+2 → 1+2). This, of course, includes unity matrix of Eq. 15. Now,
using Eq. 19 we have for inelastic case

|MJ
ij | ≤ 1

2
(25)

3 Unitarity limits in ρ-resonance models. TopBESS

notation.

The most natural Lagrangian we can write down for interactions of V 0 resonance
with scalar pions is

LV 0ππ = +igπ

MV 0

v

(

π−∂µπ+ − π+∂µπ−)

V 0
µ (26)

where in topBESS

gπ =
MV 0

v

1

g′′
(27)

For the charged V + resonance we have

LV +ππ = −ig′π
MV +

v

(

∂µπ−π0 − π−∂µπ0
)

V +
µ (28)

where in topBESS

g′π =
MV +

v

1

g′′
(29)
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For the V ff -Lagrangian we can write

L(V 0) = gt
V t̄γµt V 0

µ + gt
A t̄γµγ5t V 0

µ (30)

gb
V b̄γµb V 0

µ + gb
A b̄γµγ5b V 0

µ (31)

L(V ±) = gtb
V t̄γµb V +

µ + gtb
A t̄γµγ5b V +

µ + h.c. (32)

where in topBESS (using Eqs. 406, 408 in topBESS notes and neglecting mixing
of V with A, Z)

gt
V = −bR

g′′

8
− bL

g′′

8
, gt

A = −bR

g′′

8
+ bL

g′′

8
(33)

gb
V = +p2bR

g′′

8
+ bL

g′′

8
, gb

A = +p2bR

g′′

8
− bL

g′′

8
(34)

gtb
V = −pbR

g′′

4
√

2
− bL

g′′

4
√

2
, gtb

A = −pbR

g′′

4
√

2
+ bL

g′′

4
√

2
(35)

Important partial widths in the limit mt, mb → 0 are given as

Γ(V 0 → tt) =
MV 0

4π

(

gt
V

2
+ gt

A

2
)

(36)

Γ(V 0 → bb) =
MV 0

4π

(

gb
V

2
+ gb

A

2
)

(37)

Γ(V 0 → π+π−) =
4g2

π

192π

M3
V 0

v2
(38)

Γ(V + → tb) =
MV +

4π

(

gtb
V

2
+ gtb

A

2
)

(39)

Γ(V + → π+π0) =
4g′π

2

192π

M3
V +

v2
(40)

I will study unitarity limits in the following scenarios:
Scenario 1) p = 1, bL = 0 limit
It follows that

gt
V = gt

A = −bR

g′′

8

gb
V = gb

A = +bR

g′′

8
(41)

gtb
V = gtb

A = −bR

g′′

4
√

2

Scenario 2) p = 1, bL = bR = b limit
It follows that

gt
A = 0, gt

V = −b
g′′

4
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gb
A = 0, gb

V = +b
g′′

4
(42)

gtb
A = 0, gtb

V = −b
g′′

2
√

2

Scenario 3) p = 0, bL = 0 limit

gt
V = gt

A = −bR

g′′

8

gb
V = gb

A = 0 (43)

gtb
V = gtb

A = 0

3.1 π+π− → π+π−

The amplitude for π+π− → π+π− is the sum of three terms, s-channel V 0 ex-
change (see my notes 12.2.98), t-channel V 0 exchange (see my notes 3.2.04) and
4-point vertex (see, e.g., D. Dominici, hep-ph/9711385, Eqs. 6,7 - M4−vertex =
s+t
v2 = s

2v2 (1 + cos θ)):

M = g2
π

M2
V 0

v2

s cos θ

s − M2
V 0 + iMV 0ΓV 0

+ g2
π

M2
V 0

v2

s + s/2(1 + cos θ)

−s/2(1− cos θ) − M2
V 0

+
s

2v2
(1 + cos θ) (44)

Partial waves and unitarity limits can be found in melo/SERVER/FYZIKA
/MATHEMATICA/PARTIALWAVE/2010/pipi-pipi-gama1-2010-*.nb where *
stands for a,a1,a2,a3 (scenario 1),b,b1,b2,b3 (scenario 2),c,c1,c2,c3 (scenario 3).

Scenario 1 (MV 0 = 1 TeV). For gt
V = gt

A = 0.2, gb
V = gb

A = −0.2 we get a
contour plot of a0 partial wave in Fig.1a and a contour plot of a1 partial wave
in Fig.1b. If we demand that the amplitude be unitary up to

√
s = 3 TeV, we

get from Fig.1a

0.6 ≤ gπ ≤ 1.4, (45)

or if we demand that the amplitude be unitary up to
√

s = 2.5 TeV, we get
from Fig.1a

0 ≤ gπ ≤ 1.4 (46)

From Fig.1b we get at
√

s = 3 TeV a weaker limit

gπ ≤ 1.8, (47)
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Figure 1: π+π− → π+π−: Scenario 1. Contour plot of a) a0 and b) a1 partial
wave as a function of

√
s (horizontal axis) and gπ (vertical axis). gt

V = gt
A =

0.2, gb
V = gb

A = −0.2, MV 0 = 1 TeV. Unitarity is violated in the ’white’ area

the same as the limit from the resonance peak (
√

s = 1 TeV)

gπ ≤ 1.8. (48)

These limits depend on the quark couplings gt
V = gt

A only indirectly, through
the V 0 resonance width. As an illustration I show contour plots of a0 and a1

partial waves in Figs. 2a,b,c for gt
V = gt

A = −gb
V = −gb

A = 0.02 (10× smaller
than in Fig.1). The a0 partial wave (Fig.2a) has not changed (as compared with
Fig.1a), demonstrating independence of the quark couplings. For a1 partial wave
(Fig.2b) things have not changed for

√
s = 3 TeV region (the limit of Eq. 47

still holds), however, the resonance peak limit at
√

s = 1 TeV (Fig.2b and Fig.
2c with a detailed view of the peak region) became much stronger than the limit
of Eq.48:

gπ ≤ 0.7, (49)

indicating that for very small fermion couplings (gt
V = 0.02 corresponds for the

low energy limit g′′ = 10 to bR
.
= −0.016) the resonance peak unitarity limits

can dominate over the
√

s = 3 TeV limits of Eqs. 45,46. For gt
V < 0.02 it will

become yet stronger.
Scenario 2 (MV 0 = 1 TeV). Only the resonance peak (

√
s = 1 TeV) limits

change to (gt
V = 0.2, gt

A = 0, gb
V = −0.2, gb

A = 0)

gπ ≤ 1.6 (50)
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Figure 2: π+π− → π+π−: Scenario 1. Contour plot of a) a0, b), c) a1 partial
wave as a function of

√
s (horizontal axis) and gπ (vertical axis). gt

V = gt
A =

0.02, gb
V = gb

A = −0.02, MV 0 = 1 TeV. Unitarity is violated in the ’white’ area.
c) is a detailed view of the peak region from b).

and to (gt
V = 0.02, gt

A = 0, gb
V = −0.02, gb

A = 0)

gπ ≤ 0.5 (51)

Scenario 3 (MV 0 = 1 TeV) yields the same results as scenario 2, i.e. com-
pared to scenario 1 only the resonance peak (

√
s = 1 TeV) limits change to

(gt
V = gt

A = 0.2, gb
V = gb

A = 0)

gπ ≤ 1.6 (52)

and to (gt
V = gt

A = 0.02, gb
V = gb

A = 0)

gπ ≤ 0.5 (53)

Summarizing all these limits, we conclude that the unitarity limit from
π+π− → π+π− is

0 ≤ gπ ≤ 0.5 (54)

valid for energies up to
√

s = 2.5 TeV and for quark couplings gt
V ≥ 0.02 (which

corresponds for the low energy limit g′′ = 10 to bR ≤ −0.016 in scenarios 1,3
and bR = bL ≤ −0.008 in scenario 2).

In our model we get (g′′ = 10)

gπ =
MV 0

vg′′
.
= 0.41 (MV 0 = 1 TeV) (55)

hence our choice of parameters (which respects low energy constraints) meets
unitarity constraint.
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3.2 tt̄ → tt̄

There are two Feynman diagrams, s-channel V 0 exchange and t-channel V 0

exchange, leading to 6 nonzero helicity amplitudes (found with */tt-tt.nb pro-
gram which takes as input */dirac.m program developed by Miki; in mt/

√
s →

0, p3 → E approximation) :

M+−+− = −2(gt
A + gt

V )2
s(cos θ/2)2

−M2
V 0 + s + iMV 0ΓV 0

+ 2(gt
A + gt

V )2
s(cos θ/2)2

−M2
V 0 − s(1−cos θ)

2

M−+−+ = −2(gt
A − gt

V )2
s(cos θ/2)2

−M2
V 0 + s + iMV 0ΓV 0

+ 2(gt
A − gt

V )2
s(cos θ/2)2

−M2
V 0 − s(1−cos θ)

2

M+−−+ = 2(−gt
A

2
+ gt

V

2
)

s(sin θ/2)2

−M2
V 0 + s + iMV 0ΓV 0

M−++− = M+−−+

M++++ = 2(−gt
A

2
+ gt

V

2
)

s

−M2
V 0 − s(1−cos θ)

2

M−−−− = M++++ (56)

Partial waves and unitarity limits can be found in melo/SERVER/FYZIKA/
MATHEMATICA/PARTIALWAVE/2010/tt-tt-gama1-2010-*.nb files. where *
stands for a,a1 (scenario 1), b,b1 (scenario 2), c,c1 (scenario 3).

Scenario 1 (MV 0 = 1 TeV). For gt
V = gt

A, gb
V = gb

A = −gt
V , gπ = 0.2 we get a

contour plot of the only nonzero partial wave, a+−+−
1 , in Fig.3.
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Figure 3: tt̄ → tt̄: Scenario 1. Contour plot of a+−+−
1 partial wave as a function

of
√

s (horizontal axis) and gt
V = gt

A (vertical axis). gπ = 0.2, MV 0 = 1 TeV.
Unitarity is violated in the ’white’ area.

We conclude from Fig.3 that (constraint comes from
√

s = 3 TeV, we do not
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have unitarity violation in the ρ resonance peak)

gt
A = gt

V ≤ 2.0 (Mρ = 1 TeV) (57)

I have checked that this is valid also for gπ = 0.02 (Fig. 3 is independent of gπ).
Scenario 2 (MV 0 = 1 TeV). For gt

A = gb
A = 0, gb

V = −gt
V , gπ = 0.2 we get 8

nonzero partial waves, see Fig.4. However, neither of them gives a limit for gt
V
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Figure 4: tt̄ → tt̄: Scenario 2. Contour plot of a) a++++
0 = a−−−−

0 , b)
a+−+−
1 = a−+−+

1 , c) a+−−+
1 = a−++−

1 and d) a++++
1 = a−−−−

1 partial waves
as a function of

√
s (horizontal axis) and gt

V (vertical axis). gπ = 0.2, MV 0 = 1
TeV. Unitarity is violated in the ’white’ area

better than Eq.57. I have checked that Fig.4 will not change for gπ = 0.02.
Scenario 3 (MV 0 = 1 TeV). For gt

V = gt
A, gb

A = gb
V = 0, gπ = 0.2 we get again

just one nonzero partial wave, a+−+−
1 , see Fig.5.
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Figure 5: tt̄ → tt̄: Scenario 3. Contour plot of a+−+−
1 partial wave as a function

of
√

s (horizontal axis) and gt
V = gt

A (vertical axis). gπ = 0.2, MV 0 = 1 TeV.
Unitarity is violated in the ’white’ area.

The limit from here is the same as the one in Eq. 57. I have checked that
Fig.5 will not change for gπ = 0.02.

In our model we get in scenarios 1 and 3 (gt
A = gt

V , g′′ = 10, bL = 0, bR =
−0.1)

gt
V

.
= −g′′

8
bR = 0.125 ≤ 2.0 (58)

To express unitarity limits directly in variables bL, bR, we show allowed re-
gions in these parameters for

√
s = 2.5 TeV in Figs. 6a,b. We get from here

|bL, bR| ≤ 1.4

|bL, bR| ≤ 0.15 (59)

for g′′ = 10 and g′′ = 100, respectively.

3.3 ππ → tt̄

There are 4 nonzero helicity amplitudes (see my notes 8.3.04; in mt/
√

s →
0, p3 → E approximation):

M++ = mt

√
s

v2
+ 2

m3
t

v2
√

s
+ 2gπgV

Mρ

v
mt

√
s

s − M2
ρ + iMρΓρ

cos θ

M−− = −M++

M+− = gπ(gV + gA)
Mρ

v

s

s − M2
ρ + iMρΓρ

sin θ − 2
m2

t

v2

(1 + cos θ)

sin θ
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Figure 6: tt̄ → tt̄: Allowed regions (white) in the bL (horizontal axis) vs bR

(vertical axis) parametric space for a) g′′ = 10 and b) g′′ = 100. All partial
waves are included and superimposed. MV 0 = 1 TeV. Unitarity is violated in
the ’blue’ area.

M−+ = gπ(gA − gV )
Mρ

v

s

s − M2
ρ + iMρΓρ

sin θ (60)

Partial waves and unitarity limits can be found in melo/SERVER/FYZIKA/
MATHEMATICA/PARTIALWAVE/2010/pipi-tt-gama1-2010-*.nb files. where
* stands for a,a1,a2 (scenario 1), b,b1,b2 (scenario 2), c,c1,c2 (scenario 3).

Scenario 1 (MV 0 = 1 TeV). For gt
V = gt

A, gb
V = gb

A = −gt
V , gπ = 1.2 we get

contour (and LEGO) plots of a++
0 = a−−

0 , a++
1 = a−−

1 and a+−
1 partial waves

in Fig.7a,b,c.
The unitarity is not violated neither by a0 nor a1 for all ’reasonable’

parameter space

gπ ≤ 1.2,

0 ≤ gt
V ≤ 3,

0.5 TeV ≤
√

s ≤ 3 TeV (61)

for MV 0 = 1 TeV. Scenarios 2 and 3 do not change these conclusions (the
changes are minor and not significant - see the relevant *.nb files).

3.4 tb̄ → tb̄

There are two Feynman diagrams, s-channel V + exchange and t-channel V 0

exchange, leading to 6 nonzero helicity amplitudes (found with */tB-tB.nb pro-
gram which takes as input */dirac.m program developed by Miki; in mt/

√
s →
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Figure 7: π+π− → tt̄: Scenario 1. Contour (and LEGO) plots of a) a++
0 , b)

a++
1 , c) a+−

1 partial wave as a function of
√

s (horizontal axis) and gt
V (vertical

axis). For LEGO plot b the vertical axis shows the absolute value of the partial
wave. gt

V = gt
A, gb

V = gb
A, gπ = 1.2, MV 0 = 1 TeV. Unitarity is violated in the

’white’ area.

0, p3 → E approximation) :

M+−+− = − 2s(gtb
A + gtb

V )2 cos2(θ/2)

−M2
V + + s + i MV +ΓV +

+
2s(gb

A + gb
V )(gt

A + gt
V ) cos2(θ/2)

−M2
V 0 − 1

2s(1 − cos θ)

M−+−+ = − 2s(gtb
A − gtb

V )2 cos2(θ/2)

−M2
V + + s + i MV +ΓV +

+
2s(gb

A − gb
V )(gt

A − gt
V ) cos2(θ/2)

−M2
V 0 − 1

2s(1 − cos θ)

M+−−+ =
2s(−gtb

A

2
+ gtb

V

2
) sin2(θ/2)

−M2
V + + s + i MV +ΓV +

(62)

M−++− =
2s(−gtb

A

2
+ gtb

V

2
) sin2(θ/2)

−M2
V + + s + i MV +ΓV +

M++++ = − 2s(gb
A − gb

V )(gt
A + gt

V )

−M2
V 0 − 1

2s(1 − cos θ)

M−−−− = − 2s(gb
A + gb

V )(gt
A − gt

V )

−M2
V 0 − 1

2s(1 − cos θ)

Partial waves and unitarity limits can be found in melo/SERVER/FYZIKA/
MATHEMATICA/PARTIALWAVE/2010/tB-tB-gama1-2010-*.nb files. where
* stands for a,a1 (scenario 1), b,b1 (scenario 2), c (scenario 3).

Scenario 1 (MV 0 = 1 TeV, MV + = 1 TeV). For gt
V = gt

A, gb
V = gb

A =
−gt

V , gtb
A = gtb

V , gtb
V = 2.gt

V /
√

2, gπ = 0.2, g′π = 0.2 we get a contour plot of the
only nonzero a+−+−

1 partial wave in Fig.8.
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Figure 8: tb̄ → tb̄: Scenario 1. Contour plot of a+−+−
1 partial wave as a function

of
√

s (horizontal axis) and gtb
V (vertical axis). gπ = g′π = 0.2, MV 0 = MV + = 1

TeV. Unitarity is violated in the ’white’ area.

We conclude from Fig. 8 that for energies
√

s < 3 TeV

gtb
V ≤ 4.4 (63)

Fig. 8 will not change if we choose gπ = g′π = 0.02.
Scenario 2 yields 8 nonzero partial waves, however, none of them gives a

stricter limit than Eq. 59. Scenario 3 has all partial waves equal to zero.
To express unitarity limits directly in variables bL, bR, we show allowed re-

gions in these parameters for
√

s = 2.5 TeV in Figs. 9a,b for g′′ = 10 and
g′′ = 100, respectively. These limits are not stricter than the limits of Eq. 59.
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Figure 9: tb̄ → tb̄: Allowed regions (white) in the bL (horizontal axis) vs bR

(vertical axis) parametric space for a) g′′ = 10 and b) g′′ = 100. All partial
waves are included and superimposed. MV 0 = MV + = 1 TeV. Unitarity is
violated in the ’blue’ area.
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